

MTC35-F11 Temperature Controller **Instruction Manual**

1. Introduction

MTC35-F11 Temperature Controller is a particularly flexible controller, which allows ON/OFF control of your refrigeration or heating plant.

To get the best performance, before installing and using it, read this instruction manual carefully.

The controller has one output and one alarm output which are controlled by a MCU according to value programmed for the parameters in Parameter List.

Temperature sensor : NTC, range: -50~150 °C.

2. Coding

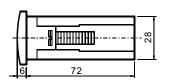
MTC35-F11-1T-2R-220V

① Software Function

F11 Single input temperature controller

2 Input 1T 1 temperature sensor ③ Output

2R 2 Relays

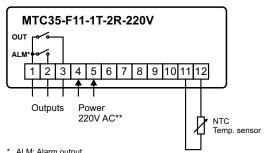

④ Power Supply

220V	220V AC	
24V	24V AC/DC	
12V	12V DC	

3. Dimensions and Mounting

- 1) Prepare a rectangular cut-out in the mounting panel to the size 72×30 mm.
- 2) Insert the controller from the front panel cut-out.
- 3) From behind of the panel, slide the mounting brackets into the guides on the side of the housing. The flat faces of the mounting brackets must lie against the housing.
- 4) Push the mounting brackets up to the back of the panel, and tighten them evenly.

Note:


Please completes waterproof processing properly, in order to avoid seeps causes the instrument damage.

4. Front Panel Layout

- ①. Up Key
- ②. Down Key
- 3. Dispaly Indicates PV, Parameters and Values
- 4. Setting Key(S)
- ⑤. Parameter Key(P)
- ⑥. Output 1 indicator(RL1) lit when OUT is 'ON'
- ⑦. Alarm output indicator lit when ALM is 'ON'

5. Electrical Connection

- ALM: Alarm output For the voltage, refer to the specific part number
- of the controller you ordered. Important!

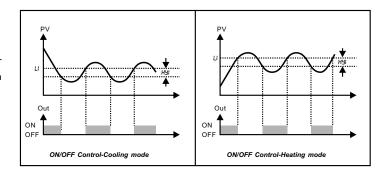
6. Operation

6.1 Viewing the PV

Mounting and wire up the controller and switch on, 3 seconds later, the measured temperature(PV) will appear on display.

6.2 Setpoint Adjusting

During the basic functioning, press key 'P' and hold for 1 second, setpoint L'appears on the display. Press key 'S', the value of $\mathcal U$ appears; press keys \blacktriangle or \blacktriangledown to increase or decrease setpoint. Keeping it pressed results in a progressively faster variation. Press key 'P' again, next parameter HH appears, setting its value in the same way.


6.3 Output Action

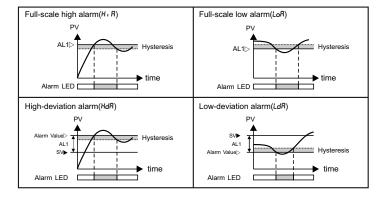
REI = d, r, OUT1 as cooling control output;

Rtl = rEu, OUT1 as heating control output;

While the controller was configured for cooling applications, to avoid compressor switch off and on frequently, must set the minimum off time($r \not e i$) between the switch OFF and switch on, regardless of the input value.

The control algorithm is ON/OFF, SV is LI, Hysteresis is HII.

6.4 Parameter List


Switch off the controller; press keys \blacktriangle and \blacktriangledown at the same time and hold on, then switch the controller on again. Parameter 5PH appears on display. Parameter selection and the display of the value is obtained by pressing key P repeatedly; change with keys \blacktriangle and \blacktriangledown and store with S.

SN	Mnemonic	Parameter	Adjustable Range	Parameter Description
1	LI	Temperature setpoint	SPX~SPL	
2	HYI	Temp. hysteresis	1~10°C	On anation in anomaton
3	RLI	Alarm value	SPH~SPL	Operation parameter
4	HY2	Alarm hysteresis	1~10°C	
5	SPH	Setpoint high limit	-50~150°C	limit the temperature adjustable
6	SPL	Setpoint low limit	-50~150°C	range LI
7	rti	OUT relay minimum off time	0~10 minutes	Compressor protection
8	PFI	Temperature sensor failure output	on OFF	OUT 'ON' while sensor failure OUT 'OFF' while sensor failure
9	RdI	Temp. sensor adjustment	-5~5℃	
10	Rct	Output action	dı r rEu	Direct(cool) Reverse(heat)
11	RLo	Alarm mode	OFF H: R LoR HdR LdR	Alarm off Full-scale high alarm Full-scale low alarm High-deviation alarm Low-deviation alarm

6.5 Alarms

Four different types of alarm can be configured with RLo: H.R, LoR, HdR, LdR as the right table shows. The hysteresis is H92.

Hysteresis is used to provide a definite indication of the alarm condition and to prevent alarm relay chatter.

6.6 Sensor Failure

While sensor connection breakdown ωr is displayed, or while overrange 5 nb is displayed.

In this case, relay output is determined by PFI as shown in the parameter list.

Technical Data

Measurement range	-50~150 °C	
Resolution	1 °C	
Sample rate	125ms	
Temperature sensor	NTC, PVC Wire, 2.0m	
Relay contact rating	5(8)A/250VAC	
Control algorithm	ON/OFF	
Power supply	220V AC, 24V AC/DC, 12V DC, ≤2.0W	
Dimensions	W78×H35×D78mm	
Environmental	Temp: -20~55 °C, Rel. Humidity: ≤85%	