

TENSION CONTROLLER TC818 V1.00

TC818卷径张力控制器

INSTRUCTION MANUAL

使用说明书(V1.0版本)

录 E

第一章 产品概述	1
1.1 概述	1
1.2 功能特点	1
1.3 型号定义	2
1.4 操作界面及操作简介	2
第二章 安装及电气连接	4
2.1 外形尺寸	4
2.2 安装	4
2.3 电气连接	5
第三章 菜单操作	7
3.1 画面与菜单结构	7
3.2 主要画面介绍	8
3.3 参数说明	9
第四章 卷径测量	10
4.1 接近开关/编码器安装与接线	10
4.2 卷径测量方式	10
第五章 调试运行	12
5.1 手动控制	12
5.2 自动控制	12
5.3 系统启停	13
5.4 双轴切换	14
5.5 加减速控制	16
5.6 卷径复位	16
第六章 锥度控制	17
6.1 锥度控制介绍	17
6.2 设置锥度控制	17
6.3 锥度控制-操作与显示	18
6.4 锥度控制-调节步骤	18
第七章 曲线程序控制	19
7.1 操作与显示	19
7.2 设置曲线程序	19
7.3 曲线程序参数介绍	20
7.4 曲线程序控制-调试步骤	20
第八章 其它功能	21
8.1 语言选择	21
8.2 参数备份	21
8.3 恢复出厂值	21
第九章 故障排除及维护	22
第十章 附录	23
10.1 参数画面	23
10.2 技术规格	24

本说明书为V3.00软件版本,TC818共有3个基本软件版本: 1.V1.00软件版本为卷径张力控制器。 2.V2.00软件版本为全自动张力控制器。 3.V3.00软件版本具有全自动张力控制及卷径张力控制功能。

第一章 产品概述

1.1 概述

在某些特殊场合,不方便安装张力传感器,或对张力控制精度要求不高,这时可以采用卷径张力控制,卷径张力控制的突出特点就是省去了价格相对较高的张力传感器,安装简单,特别适用于印刷、包装、印染等行业的分切及收卷等机器设备上使用。

TC818卷径张力控制器采集主轴与料卷轴的脉冲信号,经过CPU运算,计算出卷料半径,TC818根据卷料半径、张力设定值、磁粉离合器/磁粉制动器的额定转矩[28]*,调节输出励磁电流,达到控制张力的目的。TC818卷径张力控制器采用图形液晶显示器,可选择中、英文显示,界面友好易用,可输出0~24V/4A 直接驱动磁粉离合器,磁粉制动器。

用户可以通过设置卷径测量方式[21]选择厚度累加法或比值法作为卷径测量方式。

1.2 功能特点

- 采用128x96图形液晶显示器,中、英文显示选择,操作界面友好。
- 可选择卷径恒张力控制,卷径锥度控制以及卷程序控制方式。
- 全数字化设计,无可调电位器。
- 采用接近开关测量卷径,可实现锥度张力控制功能。
- 可选串行通信功能,可选RS485或RS232通讯接□与PLC、PC组成集散系统。
- 具有双轴切换功能及加减速控制功能。
- 自动/手动控制方式无扰切换。
- 参数密码保护, 防止误修改。
- 采用适应性极强的开关电源(92~264V),保证长期可靠运行。

*本说明书中的参数均以这种形式出现,方括弧中的数字表示参数编号。

1.3 型号定义

TC818张力控制器硬件采用模块结构, 型号定义如下:

TC818	-	主输出	辅助输出1	辅助输出2	通讯	-	软件版本
1		2	3	4	5		6

基本型号

代号	含义
TC818	TC818张力控制器

② 主输出

代号	含义
0	无主输出
24V	24V/4A输出, 驱动磁粉离合器 或磁粉制动器

③ 辅助输出1 ④ 辅助输出2

代号	含义
0	无输出
V05	0~5V DC
V10	0 ~ 10V DC
A420	4 ~ 20mA DC
V05PN	-5V ~ +5V DC

1.4 操作界面及操作简介

(5) 通讯	
代号	含义
0	无通讯功能
RS232	RS232通讯接□
RS485	RS485通讯接□

⑥ 软件版本

代号	含义
V1.00	卷径张力控制器
V2.00	全自动张力控制器
V3.00	全自动与卷径张力控制器

例如:

1.TC818-24V/0/0/0-V2.00 表示:主输出为24V/4A,可接磁粉 离合器或磁粉制动器的全自动张力控制器。

2.TC818-0/V05/V05/0-V1.00 表示:无24V/4A主输出,辅助输出1和辅助输出2为0~5V,控制力矩电机模块或变频器的卷径张力控制器。

2

Tension Controller TC818

- Set键/Esc键:用这两个键可以进行各种菜单的选择或设定的确认。
 Set键:进入下级菜单或确认执行。
 Esc键:返回上级菜单或确认返回。
- 2. 自动/手动切换键及指示灯:

按此键可实现自动控制模式和手动控制模式的双向无扰切换。 当控制器工作在自动控制模式时,自动控制指示灯(AUTO)点亮,可旋转数值设定旋钮或按递增键/递减键修 改张力设定值,按AUTO/MAN键可切换到手动控制模式。

控制器处于停止运行状态时,AUTO指示灯闪烁。

当控制器工作在手动控制模式时,手动控制指示灯(MAN)点亮,可旋转数值设定旋钮或按递增键/递减键直接修改输出功率值,按AUTO/MAN键可切换到自动控制模式。

当控制器从手动控制模式切换到自动控制模式时,控制器将此时的测量值设置为设定值,实现无扰切换。

- 输出开关键及指示灯 此键控制输出开关,重复按此键,输出则在ON/OFF之间切换。 允许输出时,OUTPUT ON/OFF指示灯亮;
 禁止输出时,OUTPUT ON/OFF指示灯灭,输出功率为0,指示灯%亮时,LED显示窗显示OFF。
- 4. LED显示切换键及指示灯

按此键可使LED显示窗分别显示张力测量值(kg/N指示灯点亮),输出功率(%指示灯点亮),卷径大小(mm指示灯点亮)。

5. 键锁定键

当控制器处于"自动控制"或"手动控制"显示界面时,此键用于锁定(防止误操作)或解锁,键锁定后将使递增键、递减键、自动/手动切换键、输出开关键和数值设定旋钮失效。

LOCK指示灯亮表示锁定,LOCK指示灯灭表示未锁定。

当处于"输入密码"显示界面,按此键将使卷料半径恢复为初始半径[01]R1,如果此时控制方式[19]设置为<u>曲</u> 线程序控制,按此键可进入"卷径-输出"参数设置菜单查看或修改曲线程序。

- 6. OUT:输出指示灯 该指示灯为绿色,指示灯的亮度与输出功率大小相关,输出功率越大,指示灯越亮。 当输出功率为零时,OUT指示灯熄灭。
- 7. OUTA: A轴输出指示灯 该指示灯为红色, 当A轴输出时, 指示灯亮。
- 8. OUTB: B轴输出指示灯 该指示灯为红色, 当B轴输出时, 指示灯亮。
- 9. ALM: 张力报警指示灯

此指示灯为红色,在张力系统运行过程中,当张力小于零张力报警值AL0时,ZT继电器动作,产生报警信号。在系统启/停、轴切过程中,零张力报警器不报警。

10. COM:通讯指示灯

该指示灯为红色, TC818接收到上位机发送的有效命令, 应答回送数据时COM灯点亮。

第二章 安装及电气连接

2.1 外形尺寸

单位:mm

2.2 安装

TC818张力控制器可采用水平安装、立面安装或屏式开孔安装方式:

2.3 电气连接

2.3.1 接线注意事项

[1] 输入、输出信号等弱电线应远离仪器电源线、动力电源线等强电线,以避免产生信号干扰。 [2] 输入、输出等弱电端子切记不能接强电,否则将烧毁整个仪表,千万不可大意。

2.3.2 接线图

接线排1:

接线排2:

┍╸	8	3	3	3	30	30	3	3	3	3	3C	8	3	3	3	30	36	3	3	3	30	30
┌┼╸	ð	Ø					(\mathcal{C})	3	(2)	3	3	ð	(\mathfrak{A})	3		3		((Ø
🖵	P	SЦг	SN Z	TC N	NA N	1B M	CC MI	C2 M	C4 M	C6 D1	[0]	D1	A G	RE RE	DL RE	DR GF	R SI	N Ef	 ηΝ +5	5V OL	ı TR	-
└→	۷		ZT	ZT	PA	PB	MC1	МСЗ	MC5	GND	+24Ų	1	DIB	μΗL	BLKL	BLKR	μhr	SA	EAP	TRG	TR+	TRG

2.3.3 接线端子说明

接线排1:

序号	名称	类型	技术参数	说明
1	PSL, PSN	输入	电压85VAC~264VAC	接220VAC电源
2	ZT, ZTC	输出		零张力报警输出
3	PA, NA	输出	输出24V/4A 或 90V/10A	接A轴磁粉离合器或接A轴滑差调速电机
4	PB, NB	输出	输出24V/4A 或 90V/10A	接B轴磁粉离合器或接B轴滑差调速电机
5	MCC	输入		外部输入开关信号公共端
6	MC1	输入		外部启动/停止控制信号输入端子
7	MC2	输入		外部双轴切换控制信号输入端子
8	MC3	输入		外部加速控制信号输入端子
9	MC4	输入		预备输出选择开关输入端子
10	+24V, GND	输出		外部接近开关(或旋转编码器)供电电源
11	DI0	输入	最高频率15KHz	主轴接近开关输入端子

接线排2:

序号	名称	类型	技术参数	说明		
1	DIA	输入	最高频率15KHz	A轴接近开关输入端子		
2	DIB	输入	最高频率15KHz	B轴接近开关输入端子		
11	SA, SN	输出	0~20mA 或 0~5V	同步输出0~5V(接A轴功率单元)		
12	EAP, EAN	输出	0~20mA 或 0~5V	第二输出0~5V(接B轴功率单元)		
13	TR+,TR-,TRG	输出	接RS232或RS485	RS232/RS485通讯接□		
14	+5V,0V	输出		备用电源		

第三章 菜单操作

3.1 画面与菜单结构

3.2 主要画面介绍

(1) 卷径恒张力控制

(2) 卷径锥度张力控制

(3) 卷径曲线程序张力控制

卷径程	序控制		
程序号:	00	◄	当前运行的程序编号
卷径值:	50mm		
输出值:	10.0%		

(4) 手动控制界面

(5) 密码界面

注意:为了防止控制器参数被误修改,设完参数后请将密码修改为其它的值。

(6) 参数菜单

3.3 参数说明 下表按功能对参数进行了分类

参数号	参数名称	调整范围	出厂值	说明							
功能选择参数:以下参数为基本参数,应根据实际情况首先设置											
19	控制方式 恒张力控制 控制方式 维度张力控制 曲线程序控制		恒张力控制	控制方式							
20	锥度系数	0.01~1.00	1.00	用于锥度张力控制,影响锥度张力控制中 张力的变化率							
16	最大输出值	0.0~100.0%	100.0%	控制器输出功率上限							
28	额定转矩	05~999Nm	50Nm	磁粉离合器/磁粉制动器的额定转矩							
卷径测量参数:以下参数影响卷径测量,当选择卷径张力控制或锥度张力控制时必须对以下参数进行设置											
01	初始半径	最小半径-最大半径	50mm	料卷的初始半径							
02	卷料厚度	0.001~1.000mm	0.020mm	卷料的实际厚度							
21	卷径测量方式	厚度累加法 比值法	厚度累加法	此参数控制卷料半径的测量方式							
22	最大半径	10~999mm	500mm	料卷最大半径(卷料半径上限)							
23	最小半径	10~999mm	40mm	料卷最小半径(卷料半径下限)							
24	主轴半径	10~999mm	50mm	主轴半径,用比值法测量卷径时需设置此值							
25	主轴脉冲数	01~1000	01	主轴接近开关/编码器每转一圈产生的 脉冲个数							
26	卷轴脉冲数	01~1000	01	卷轴接近开关/编码器每转一圈产生的 脉冲个数							
27	计算脉冲数	01~1000	20	当脉冲累计到此值时计算一次卷径,此参数影 响卷径更新的速度及卷径测量精度							
29	卷取方式	收卷, 放卷	放卷	收卷/放卷设置							
启动/停	上参数:以下参数影	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	应该根据实际情况正确设	· · · · · · · · · · · · · · · · · · · ·							
03	自停 新 率	1~100Hz	01Hz	同步启停功能开启时 系统通过临测主轴转速							
04	预备输出	0.0~100.0%	0.0%	系统启动时的输出值							
05	启动时间	0.1~25.0秒	0.1秒	系统启动时间							
06	停机增益	01~400%	50%	01~400%							
07	停机时间	0.1~25.0秒	0.1秒	系统停机时间							
12	加速系数	0.01~2.00	1.20	0.01~2.00							
13	减速系数	0.01~2.00	1.00	0.01~2.00							
30	同步启停	关闭 开启	关闭	如果开启此功能,系统会根据主轴转速来进行 自动启动/停止运行							
轴切参	数:以下参数影响轴切	刀时的输出, 当系统有车	由切功能时应正确设置								
08	轴切输出	0.0~100.0%	0.0%	0.0~100.0%							
09	轴切时间	0.1~25.0秒	0.1秒	0.1~25.0秒							
10	辅助输出	0.0~100.0%	0.0%	0.0~100.0%							
11	辅助时间	0.1~25.0秒	0.1秒	0.1~25.0秒							
张力设	定值限制参数										
14	最大设定值	0.0~999.9kg	50.0kg	限制张力设定最大值							
15	最小设定值	0.0~999.9kg	0.0kg	限制张力设定最小值							
通讯参数											
17	通信地址	0.0~9.9	9.9	控制器通讯地址							
18	通信波特率	4800,9600,19.2k bps	4800 bps	通讯速率							
附加功	能参数										
32	中文English	甲文 English	中文	语言选择							
33	参数备份	恢复? 备份?		备份及恢复参数							
34	恢复出厂值	恢复?		恢复出厂值,所以当前设置值将会丢失							
35	技术支持			版权信息及公司网址							

第四章 卷径测量

4.1 接近开关/编码器安装与接线

请选用NPN型接近开关或编码器。

当采用<u>厚度累加法</u>测量卷径时,只需在卷轴A(卷轴B)上安装接近开关 /编码器。

当采用<u>比值法</u>测量卷径时,卷轴A(卷轴B)和主轴都需要安装接近开关或 编码器。

接近开关/编码器接线

4.2 卷径测量方式

用户可以通过设置卷径测量方式[21]选择用厚度累加法或比值法来测量卷料半径。

4.2.1 厚度累加法

控制器对卷轴接近开关产生的脉冲进行计数,根据累计脉冲数N, 卷轴脉冲数[26]N2, 卷料厚度[02]和初始半径 [01]R1,按下式计算当前的卷径:

R=R1
$$\pm \frac{N}{N2}$$
t (+:收卷, -:放卷)

R1: <u>初始半径[01]</u> N: 累计脉冲数 N2: <u>卷轴脉冲数[26]</u>/转 t: <u>卷料厚度[02]</u>

为保证卷径测量准确,与卷径测量相关的参数必须正确设置,而且要注意测量卷径的接近开关正确安装。

厚度累加法的相关参数:

1. <u>初始半径[01]</u>R1 此值根据实际情况设置,当控制器处于密码输入画面时,按一下Lock键,卷径将会复位为初始卷径 当控制器进行轴切换时,卷径将会自动复位为<u>初始半径[01]</u>R1。

- 2. <u>卷料厚度[02]</u> 材料的实际厚度,单位mm。
- 3. 最大半径[22] 此值根据实际情况设定。
- 4. <u>最小半径[23]</u> 此值根据实际情况设定。
- 5. <u>卷轴脉冲数[26]</u>N2 卷轴每转一圈产生的脉冲个数。
- 6. <u>计算脉冲数[27]</u> 当脉冲累计到<u>计算脉冲数[27]</u>时计算一次卷径。
- 7. 卷取方式[29] 影响卷径计算,收卷时,卷径累加;放卷时,卷径递减。

4.2.2 比值法

当采用比值法测量卷径时,必须设定:

- 1. <u>最大半径[22]</u> 此值根据实际情况设定
- 2. 最小半径[23] 此值根据实际情况设定
- 3. <u>主轴半径[24]</u>R0 主轴半径
- 4. 主轴脉冲数[25] 主轴每转一圈产生的脉冲个数N1。
- 5. <u>卷轴脉冲数[26]</u>卷轴每转一圈产生的脉冲个数N2。

6. <u>计算脉冲数[27]</u>当脉冲累计到<u>计算脉冲数[27]</u>时计算一次卷径,此参数影响卷径测量精度及测量时间间隔,值越大,测量卷径精度越高,但测量时间间隔变长。

当采用比值法测量卷径时,控制器对卷轴及主轴接近开关产生的脉冲进行计数,并根据所设参数自动计算出卷径值,比值法不需要设定卷料厚度[02]和卷取方式[39]。

第五章 调试运行

当卷径测量正确后,即可进入控制器的自动及手动运行模式调试,先用手动控制模式运行,当手动运行正常,卷料达到合适及稳定的张力时,可切换到自动控制模式运行。

5.1 手动控制

当控制器处于自动控制模式时,按一下AUTO/MAN键,MANUAL指示灯亮,控制器转入手动控制模式,可旋转数值设定旋钮或按递增键/递减键直接修改输出功率值,修改范围受<u>最大输出值[16]</u>的限制。 随着输出值的修改,张力测量值会有相应的变化,当卷料达到合适及稳定的张力时,可切换到自动控制模式运行。

当从手动控制切换到自动控制时,控制器将保存此时的张力值。

5.2 自动控制

当控制器处于手动控制模式时,按一下AUTO/MAN键,AUTO指示灯亮,控制器转入自动控制模式,可旋转数值设定旋钮或按递增键/递减键直接修改张力设定值,修改范围受最大设定值[14]和最小设定值[15]的限制。

当控制器从手动控制模式切换到自动控制模式时,控制器将根据此时的输出值计算出设定值,实现无扰切换。 张力设定值是指在控制过程中,卷料所要达到的目标张力。在自动运行状态时,控制器会根据设定值,卷径测量值进行运 算后调节输出,使实际张力趋近设定值,以达到控制效果。

控制器处于停止运行状态时, AUTO指示灯闪烁。

卷径恒张力控制-调试步骤

[1] 确保测卷径的接近开关安装及接线正确,检查并判断接近开关是否正常工作。

- [2] 对卷径恒张力控制的相关参数进行正确设置:
 - 控制方式[19]设置为恒张力控制 卷径测量方式[21]设置为厚度累加法或比值法
 - 2. 对卷径测量的相关参数进行正确设置, 见第10页[4.2 卷径测量方式]。
 - 3. 正确设置磁粉制动器/离合器的额定转矩[28]
 - 4. 根据系统要求对04-11号参数设置适当的值。
- [3] 手动运转系统,确认卷径测量正确,如不正常回到步骤[2],

[4] 手动运转系统,调节输出值使张力达到合适值,然后切换到自动控制,控制器将保存此时的张力值。

控制器输出受输出开关键控制,重复按此键,输出在ON/OFF之间切换。 OUTPUT ON/OFF指示灯亮:允许输出; OUTPUT ON/OFF指示灯灭:禁止输出,输出功率为0。

进行自动控制时,请将MC1开关接通。

如果MC1开关断开,控制器将转入停机状态,此时AUTO指示灯闪烁,输出预备输出值P.on。 当同步启停[30]功能开启时,系统的启动/停止不仅受MC1开关的控制,而且受检测辊转速的控制。

5.3 系统启停

(1) 启动/停止控制开关

TC818张力控制器的启动、停止由接线端子MC1, MCC控制, 在MC1, MCC端子接一开关, 此开关(S1)即为系统的启停 开关, S1开关的接通或断开将启动或停止张力系统运行。

当同步启停[30]功能开启时,系统的启动/停止不但受启停开关S1的控制,而且受到主轴运行频率的控制。 使用同步启停功能,必须在检测辊上安装一个接近开关,控制器将监测主轴的运行频率。 当启停开关S1接通后,检测辊的运行频率大于<u>启停频率[03]</u>时,启动运行,AUTO灯点亮。 当启停开关S1接通后,检测辊的运行频率小于<u>启停频率[03]</u>时,停止运行,AUTO灯闪烁。 在全自动张力控制系统中,一般将MC1和MCC短接,系统将根据检测辊的运行频率自动控制系统的启动和停止。

(2) 启动过程

当启停开关S1接通后,系统开始运行,控制器投入自动运行,按设定的张力进行恒张力闭环控制,AUTO灯点亮。

(3) 停机过程

运行过程中,在启停开关S1断开的瞬间,控制器将此时的输出值P乘以停机增益[06]G作为瞬间输出,使系统运行速度迅速下降,同时停止计时器开始计时,在停机过程中进行自动控制,当到达停机时间[07]的终点时,控制器投入开环运行,输出预备输出P.on,产生预备张力。

控制器处于停止运行状态时, AUTO指示灯闪烁。

(4) 预备输出选择

系统的预备输出由**预备输出选择开关S4**控制。

预备输出选择开关

当S4处于接通状态时,在系统的停机瞬间(MC1与MCC断开前的瞬间)的输出值P作为预备输出。 当S4处于断开状态时,预设在控制器存储器中的<u>预备输出[04]</u>作为预备输出。 一般支付还模式使用预备输出选择开关S4:

 暂停机械时,接通S4,利用输出记忆功能,从停机输出值开始启动。
 更换料卷时,断开S4,从预设在控制器中的<u>预备输出[04]</u>开始运转。此时,<u>预备输出[04]</u>为相应于 初始直径的输出值。

5.4 双轴切换

当系统采用双轴(A,B轴)轮换运行时,在放卷轴上的材料快放完时,或在收卷轴上的材料快收满时,需对卷轴进行切换。

(1) 双轴切换控制

TC818张力控制器的轴切换功能由接线端子MC2, MCC控制, 在MC2, MCC端子接一开关, 此开关即为系统的轴切换开关。当轴切换开关断开时, A轴运行; 当轴切换开关短接时, B轴运行。

(2) 放卷轴切换过程

当卷取方式[29] 设为放卷时,将按以下步骤完成轴切换过程:

假设A轴正在运行,此时接通轴切换开关,那么控制器的输出将从输出给A轴改为输出给B轴,此时输出预置的<u>轴切输出</u>[08],同时轴切定时器开始计时,当到达轴切时间[09]的终点时,控制器投入自动运行,按设定的张力进行恒张力闭环控制。

与此同时, 辅助输出[10]在预置的辅助时间[11]内输出电流给A轴, 使A轴迅速停止运转。

若轴切换开关从接通状态切换到断开状态,即从正在运转的B轴切换到等待的A轴,其控制过程相同,只需将上述A轴B轴互换即可。

(3) 收卷轴切换过程

当卷取方式[29]设为收卷时,将按以下步骤完成轴切换过程:

假设A轴正在运行,此时接通轴切换开关,那么<u>辅助输出[10]</u>输出给B轴,使B轴启动运转,同时辅助定时器开始计时,当辅助时间[11]到达终点时,控制器的输出将从输出给A轴改为输出给B轴,此时输出预置的<u>轴切输出[08]</u>,同时轴切定时器开始 计时,当到达<u>轴切时间[09]</u>的终点时,控制器投入自动运行,按设定的张力进行恒张力闭环控制。

若轴切换开关从短接状态切换为断开状态,即从正在运转的B轴切换到等待的A轴,其控制过程相同,只需将上述A轴B轴互换即可。

轴切换过程 - 放卷

5.5 加减速控制

在MC3, MCC端子接一按键, 当系统需要提速(加速/减速)时, 按一下按键, 此时输出值为切入瞬间的输出值乘以<u>加速系数[12]</u>, 使系统加速/减速。

在放卷系统中, <u>加速系数[12]</u>小于1.00, 系统加速, <u>加速系数[12]</u>大于1.00,系统减速。 在收卷系统中, <u>加速系数[12]</u>小于1.00, 系统减速, <u>加速系数[12]</u>大于1.00,系统加速。

在双轴切换、待机或启动状态中,控制器将对加/减速控制不作响应。只有当TC818处于运行状态才对加/减速控制响应。

加速/减速操作示意图

5.6 卷径复位

在[输入密码]界面按一下Lock键将使卷径复位为初始半径[01]。

当换新卷时,需要进行卷径复位操作。当控制器进行双轴切换动作时,控制器会自动复位卷径到初始半径[01]。

第六章 锥度控制

6.1 锥度控制介绍

在收卷系统中,随着卷径的增大,使卷料张力逐步减小的控制称为锥度张力控制,锥度控制可使收卷膜的内层收得较紧 ,而外层的膜收得较松,从而使卷料膜的层与层之间不打滑,防止材料卷绕时卷得过紧及卷料卷绕歪斜。

当张力控制器用于放卷控制时,控制器应设置为恒张力控制方式。

6.2 设置锥度控制

要采用锥度张力控制,请将控制方式[19]设置为维度张力控制并设置适当的维度系数[20],维度系数[20]t1越大,随卷径 变化,张力变化越大。当<u>维度系数[20]</u>t1为0时,为<u>恒张力控制</u>方式。

	-		
19. 控制方式	20. 钅	隹度系	数
恒张力控制	t1	=	1.00
▶锥度张力控制			
曲线程序控制	Esc	确认/	退出

6.3 锥度控制-操作与显示

(1)自动控制画面

(2)手动控制画面

当从手动控制切换到自动控制时,控制器将保存此时的张力值。

6.4 锥度控制-调试步骤

- [1] 确保测卷径的接近开关安装及接线正确,检查并判断接近开关是否正常工作。
- [2] 对卷径锥度控制的相关参数进行正确设置:
 - 1. 控制方式[19]设置为维度张力控制
 - 2. 对卷径测量的相关参数进行正确设置, 见第10页[4.2 卷径测量方式]。
 - 3. 正确设置磁粉制动器/离合器的额定转矩[28]
 - 4. 设置合适的<u>锥度系数[20]</u>t1
 - 5. 根据系统要求对04-11号参数设置适当的值。
- [3] 手动运转系统,确认卷径测量正确,如不正常回到步骤[2]。
- [4] 设置锥度系数并手动运行系统,调节输出值使张力达到合适值,然后切换到自动控制,控制器将保存此时的张力值。

第七章 曲线程序控制

卷径-输出曲线控制是卷径控制的特殊应用,当TC818作为卷径-输出曲线程序控制器使用时,仪表按照设定的卷径-输出曲线,根据实测卷径不断地改变输出,达到张力控制的目的。卷径-输出曲线控制不需对磁粉制动器的<u>额定转矩[28]</u>进行设置。

要采用卷径程序控制,请把控制方式[19]设置为<u>曲线程序控</u> <u>制</u>。

7.1 操作与显示

TC818按照实测卷径及设置的卷径-输出值曲线经运算后调节输出,达到张力控制的目的。 可以让测量卷径的实测值显示在面板左边的LED显示窗里。当mm指示灯亮时,LED显示窗显示卷径值。

7.2 设置曲线程序

当控制方式[19]设置为曲线程序控制,在[输入密码]界面,按一下Lock键将进入曲线程序参数菜单。

7.3 曲线程序参数介绍

TC818可内设10条卷径-输出值曲线程序,每条由5个点组成,每个点为一个卷径-输出值坐标。

(1) 程序号

当要在同一台机器上对不同的卷料进行卷径曲线程序控制时,可预设多条曲线程序以备 选择。

TC818可以设置10条卷径-输出值曲线程序,编号范围0~9。

(2) 卷料厚度

(3) 卷料半径Rn

42. 卷料半径R1	曲线程序中的半径设定点,这些半径和它们所对应的输出值决定了曲线程序。
KI- 40mm Esc 确认/退出	共5个点: <u>半径r1[42]到半径r5[50]</u> 。 设置范围: 最小卷料半径[23] 到 最大卷料半径[22] 。
	半径需按从小到大设置,满足以下条件:r1≤r2≤r3≤r4≤r5.

卷料的实际厚度,请准确设置,此参数影响卷测量。

(4) 输出功率0utn

7.4 曲线程序控制-调试步骤

- [1] 确保测卷径的接近开关安装及接线正确,检查并判断接近开关是否正常工作。
- [2] 对卷径程序控制的相关参数进行正确设置:
 - 1. 控制方式[19]设置为维度张力控制
 - 2. 对卷径测量的相关参数进行正确设置, 见第10页[4.2 卷径测量方式]。
 - 3. 设置合适的曲线程序参数
 - 4. 根据系统要求对04-11号参数设置适当的值。
- [3] 手动运转系统,确认卷径测量正确,如不正常回到步骤[2]。
- [4] 根据实际要求,设置合适的卷径-输出值曲线,切换到自动控制运行。

第八章 其它功能

8.1 语言选择

TC818可以选择中文或者英语操作界面:

- 进入中文English[32]参数画面
- (2) 用递增键/递减键或者数值设定旋钮选择语言
- (3) 按 Esc 键确认退出

8.2 参数备份

33.参数备份	此功能可以对控制器当前参数进行备份和恢复,系统工作正常时,可对当前参
▶恢复?	数进行备份保存,当需要时(如参数设置混乱)可以将备份的参数值恢复。
备份? Set确认 Esc退出	注意:执行"恢复"操作将丢失所有当前参数!

8.3 恢复出厂值

此功能可以将控制器的所有参数恢复到出厂时的默认值。 注意:执行此功能将丢失所有当前参数!

第九章 故障排除及维护

现象	可能故障	解决方法
通电后,控制器不工作	电源问题,保险丝熔断	控制器采用 110-264 VAC 供电 1. 请检查电源是否正确连接。 2. 更换新的保险丝(4A)
卷径测量显示不正确	1. 与卷径相关的参数设置不正确 2. 接近开关或编码器选型不正确 3. 接近开关/编码器损坏或接线错误	1. 根据实际情况设置正确的卷径测量参数 2. 请选择NPN型接近开关/编码器 3. 检查接线或更换新的接近开关/编码器
控制器没有输出	1. 输出被关闭 2. 输出短路保护 3. A/B轴输出接线错误	1. 确认 OUTPUT ON/OFF 指示灯点亮 2. 关闭电源, 30秒后通电 3. 正确连接输出设备
按键或数值设定旋钮不起作用	按键被锁定	请检查Lock指示灯状态,Lock灯亮表示按键被锁定
MC1开关接通后不运行	1. <u>同步启停[39]</u> 功能开启 2. <u>反馈方式[38]</u> 设置错误	1. 关闭 <u>同步启停[39]</u> 功能, 如果开启此功能, 需在主轴 安装接近开关, 并正确设置启停频率[03] 2. 设置正确的反馈方式[38]
不能切换到自动控制模 式		2. 按键锁定键, 取消锁定
设备停车后重新启动,张力很 大或很小 1.系统停车时,启动/停止开关MC1没有断开 2.MC4开关末短接,预备输出没有记忆		1.停车时,要将启动/停止开关MC1断开 2.将预备输出开关MC4短接
当从手动模式切换到自动模式功,控制器从手动控制模式切换到自动控制模式时,控制器将此时的测量值设置为设定值,实现无扰切换		正常,此功能使张力控制系统实现无扰切换

第十章 附录

10.1 参数画面

10.2 技术规格

张力信号	1. 微位移专用张力传感器(输入信号200mV,供电电源5VDC) 2. 应变片式张力传感器(输入信号为20mV,供电电源10VDC)
卷径测量	接近开关或编码器,三极管NPN输出,最高频率15KHz
测量精度	±0.2%FS±1个字
采样周期	100ms
控制算法	PI(比例积分算法)
主输出	两路24V/4A输出,直接驱动磁粉离合器/制动器
辅助输出	两路0~20mA输出,可接变频器或电/空变换器等执行机构
报警	常开继电器
通讯	RS232, RS485
外形尺寸	246(W)x154(H)x156.5(D)mm
电 源	92~240VAC, 50/60 Hz

地址:深圳市南山区登良路南油天安工业区6栋4D 邮编: 518054 电话: 0755-26409070 26416767 26415837 13802580359 传真: 0755-26416767 http://www.altec.cc E-mail:dwy@altek.cn